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Diluted neural networks with adapting and correlated synapses
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We consider the dynamics of diluted neural networks with clipped and adapting synapses. Unlike previous
studies, the learning rate is kept constant as the connectivity tends to infinity: the synapses evolve on a time
scale intermediate between the quenched and annealing limits and all orders of synaptic correlations must be
taken into account. The dynamics is solved by mean-field theory, the order parameter for synapses being a
function. We describe the effects, in the double dynamics, due to synaptic correlations.
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In recent years, many models with a coupled dynamics
fast Ising spins and slow interactions have been studie
understand the simultaneous learning and retrieval in re
rent neural networks@1,2#. A major approach to this problem
is replica mean-field theory with the replica number be
the ratio of two temperatures characterizing the stocasti
in the spin dynamics and the interaction dynamics, resp
tively @3,4#. Recently, this approach was used to stu
coupled dynamics in theXY spin glass@5,6#; the generaliza-
tion of these ideas@7# to the case of a hierarchy of sub
systems with different characteristic time scales, in
Sherrington-Kirckpatrick model, interestingly leads to Pa
si’s solution @8#. Other approaches to coupled dynamics
neural networks are described in@9#, using a discrete time
master equation approach, and in@10#, exploring temporal
learning rules. Stochastic learning rules in diluted neural n
works were considered in@11#: it was shown that in order to
preserve the associative memory capability of the netwo
the learning rateq must be kept very small@e.g., q
5O(1/K), whereK is the connectivity#. Moreover, in@11#
the choice of a very small learning rate implied that the c
relation between synaptic variables could be neglected
that the dynamics was solved by flow equations for a f
macroscopic order parameters. It is the purpose of this w
to reconsider coupled dynamics in diluted neural netwo
and keep the learning rate fixed as the connectivityK tends
to `. The dynamics of the network, in this limit, can b
exactly solved by taking into account all the orders of cor
lations between synapses, the order parameter for syna
being a function on the interval@21,1#. According to the
argument in@11#, the functioning of this model as an ass
ciative memory is questionable; we regard it as a sim
model to analyze the effects due to synaptic correlation
the double dynamics.

As in @11#, we consider a diluted neural network wit
unidirectional synapses obeying a stochastic learning me
nism @12#. The model is made ofN three-state neuronssi
50,61, each connected~by binary synapsesJi j 561) to K
input sites, chosen at random among theN sites. The parallel
rule for updating synapses is the following: with probabil
q each synapseJi j assumes the valuesisj if this product is
not zero; otherwise the synapse remains unchanged. A
allel stochastic dynamics with inverse temperatureb is as-
sumed for neurons, where the local field acting on neurosi
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is given by hi5((Ji j sj )/K, the sum being over the inpu
neurons. The coupled dynamics consists in alternate up
ing of neurons and synapses. We will consider the lim
N,K→` with K! ln N: it is well known @13# that neurons
can then be treated as independent and identically distrib
stochastic variables. Moreover, we chooseq constant asK
→`: q controls the ratio between the time scales over wh
neurons and synapses evolve and theadiabatic approxima-
tion is recovered by settingq to zero@14#. As a consequence
in the present case one cannot neglect the correlations am
synapses.

Let us denote bys1 ,s2 , . . . ,sK the input neurons and
J1 ,J2 , . . . ,JK the set ofK input synapses for a given neuro
s0 ~due to the translational symmetry the following reason
holds for an arbitrarys0).

We start considering the following simple situation: th
synapses are independently updated by the transition ma
T(JuJ8)5)a51

K t(JauJa8 ), where the transition matrix for the
single synapse is the following:

t5S 12A B

A 12BD .

A good order parameter for synapses isx5((a51
K Ja)/K

P@21,1#. Indeed, denoting withr t(x) the probability distri-
bution function~PDF! for x at time t, one can demonstrat
~see the Appendix! that in the large-K limit the evolution of
x is ruled by a deterministic Liouville operator:

r t11~x!5E
21

1

dy d„x2 x̂~y!…r t~y! ~1!

with x̂5B2A1y(12A2B). The moments ofr t provide
the synaptic correlations:

^xp& t5E dx xpr t~x!5^J(1)J(2)
•••J(p)& t , ~2!

where the synapsesJ(1), J(2), . . . ,J(p) are all different. The
probability distribution, at timet, for the local field acting on
neurons0 is
©2001 The American Physical Society04-1
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Pt~h!5
1

mt
r tS h

mt
D , hP@2mt ,mt#, ~3!

wheremt is ^s& t , the average magnetization of the neuron
configuration. We will denote byQt5^s2& t the activity of
neurons, satisfyingQt>mt for every timet.

Let us now come back to our problem. Due to the syn
tic learning rules, the values ofA andB now depend on the
value ofs0. If s050, thenA5B50 andx̂5y. If s051, then
A5q@(Qt2mt)/2#, B5q@(Qt1mt)/2#, and x̂5qmt1y(1
2qQt). If s0521, then A5q@(Qt1mt)/2#, B5q@(Qt

2mt)/2#, andx̂52qmt1y(12qQt). This implies that even
if at time t we knowx exactly~i.e.,r t is ad function!, at time
t11, x is not determined (r t11 will generically be a convex
sum of threed ’s!. The full distributionr now plays the role
of order parameter for the synaptic variables, the time e
lution law being given by a mixture of three Liouville oper
tors:

r t11~x!5~12Qt!r t~x!1
Qt1mt

2~12qQt!
uS 12Ux2qmt

12qQt
U D

3r tS x2qmt

12qQt
D1

Qt2mt

2~12qQt!
uS 12Ux1qmt

12qQt
U D

3r tS x1qmt

12qQt
D ; ~4!

u is Heaviside’s function.
Let us now consider the dynamics of neurons. We assu

the following form for the conditional probability for neu
rons:

P~st11uh!}expb~hst111ast11
2 !, ~5!

wherest is the vector of neurons at timet, anda controls the
mean activity of the network. The time evolution law fo
neuronic order parameters is then given by

m~ t11!5E
21

1

dx r t~x!
2 sinh~bxmt!

2 cosh~bxmt!1e2ba
,

Q~ t11!5E
21

1

dx r t~x!
2 cosh~bxmt!

2 cosh~bxmt!1e2ba
. ~6!

These two equations, together with Eq.~4! and the initial
conditionsm0 , Q0, andr0(x), solve the double dynamics fo
the present model.

Now we turn to analyze the flow equations. First, we co
sider the case ofm andQ being kept constant:r t tends as-
ymptotically to the invariant distributionr` of Eq. ~4!. One
can easily derive a recurrence formula for the moments
the stationary distribution:
05290
-

-

e

-

f

^xn&`5( 8 S n

kD ~12qQ!n2k~qm!k^xn2k&`

1
m

Q ( 9 S n

kD ~12qQ!n2k~qm!k^xn2k&` , ~7!

where(8 ((9) is over even~odd! positive integers less tha
or equal ton. The invariant distribution is ad function in the
following cases. Ifm50, thenr`5d(x). If m561, then
r`5d(x21), and in the adiabatic limitq→0 we haver`

→d(x2m2/Q2). In the general case the first two cumulan
are given by

^x&`5m2/Q2 , ~8!

which is independent ofq, and

^x2&`2^x&`
2 5

q

22qQ S m2

Q
2

m4

Q3D . ~9!

The last formula clearly shows how the synaptic corre
tions are controlled by the learning rateq. For example, in
Fig. 1 the invariant distribution of Eq.~4!, we numerically
find, is depicted~for q50.06, Q50.8, andm50.5). We
compare it with thex distribution; over time, we find simu-
lating a system ofK synapses, evolving by the stochas
learning mechanism, where neuronss0 and$sa% are indepen-
dently sampled witĥs&5m and^s2&5Q at each time step
The agreement with the theoretical curve increases aK
grows and it is fairly good already forK5500 ~see Fig. 1!.

The stationary regime of the coupled dynamics show
paramagnetic phase withm50 and a ferromagnetic phas
with mÞ0 @15#. By numerical analysis we find the transitio
line between the two phases in theb-a plane: in Fig. 2, our
results are shown for some values ofq. At fixed a, the critical
temperature decreases asq is increased: the synaptic corre

FIG. 1. The dashed lines represent thex distributions from nu-
merical simulations forK520 ~1!, K5100 ~2!, K5200 ~3!, K
5500 ~4!, to be compared with the invariant distribution of Eq.~4!,
represented here by the solid line. The caseq50.06, Q50.8, and
m50.5 is considered here.
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BRIEF REPORTS PHYSICAL REVIEW E 64 052904
lations seem to amplify the disordering capability of therm
noise. The two phases are separated by a first-order tra
tion, in agreement with@3# where the para-ferro transitio
changes from second to first order as the influence of s
on the couplings dynamics becomes dominant.

Let us now study the role of adapting synapses in
damage-spreading phenomenon~see, e.g.,@16#!. For simplic-
ity we assume two state neuronss561, and we work in the
disordered phasem50. We assume the local fields to be

hi5
1

AK
( Ji j sj1Bi , ~10!

whereBi are random magnetic fields whose Gaussian dis
bution has varianceB, and the normalization has been ch
sen differently from the previous case so as to have a n
trivial K→` limit in this case. We assume to be at ze
temperature and consider two replicas of the system, sub
to the same random fields and the same noise in the stoc
tic learning mechanism. We introduce the order parame
D ande defined as follows:12 (11D) is the probability that
two corresponding synapses, in the two replicas, are eq
while 1

2 (11e) is the probability that two corresponding ne
rons, in the two replicas, are equal. As in the preceding s
tion, one easily finds that even ifD is exactly known at a
certain time, it is not determined al later times: it must
described by a probability distributionG t(D), whose evolu-
tion is given by Eq.~4! with Q51 andmt replaced bye t .
While keeping fixedD, the variables$Js% are equal, in the
two replicas, with probability12 (11De). Therefore, the loca
fields in the two replicas can be writtenh15X1Y and h2
5X2Y, whereX andY are random Gaussian variables wi
variance, respectively,sX5(11De)/21B, and sY5(1
2De)/2. One can then easily obtain the time evolution la
for e:

FIG. 2. In the planeb-a of parameters~see the text!, the tran-
sition lines between the ferromagnetic and paramagnetic phase
depicted forq50 ~continuous line!, q50.02 ~dashed line!, andq
50.05 ~dotted line!.
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pE21

1

dDG t~D!tan21A 12De t

11De t12B
. ~11!

Studying damage spreading is equivalent to check the sta
ity of the trivial fixed pointe51 andG5d(D21), corre-
sponding to two identical replicas. We find that, for eve
finite B, damage spreading occurs and a nontrivial fix
point e* ,1 is stable. For low values ofq the stationary
distributionG is peaked around its averagee2: approximat-
ing the tan21 by Taylor expansion at the second order arou
D5e2, the equation for the fixed point reads

e* 512
4

p
tan21A 12e* 3

11e* 312B

1
C Be* 2

p@~12e* 3!~11e* 312B!#3/2
, ~12!

where C5^D2&2^D&25q(e* 22e* 4)/(22q) at equilib-
rium.

The solutione* of the equation above is the asymptot
correlation between neurons in the two replicas as a func
of q. In Fig. 3, we depict]e* /]quq50 versusB. Since we find
this quantity to be always positive, it follows that the syna
tic correlations act against the damage-spreading phen
enon and tend to increase the correlation between the
figurations of neurons in the two replicas, as one mig
intuitively expect.

We have described an exactly solvable model of dou
dynamics where synaptic correlations, arising from a s
chastic learning mechanism, are important at all orders.
order parameter for synapses in the mean-field dynam
theory is a function whose evolution is given by a mixture
Liouville operators. The critical temperature for the ferr
magnetic transition is found to decrease as the learning
increases: there is a wide range of temperatures such tha
system may order or not depending on the speed at whic
adapts, and ordering is asymptotically achieved only if

are

FIG. 3. Concerning the damage spreading phenomenony
5]e* /]quq50 is depicted versus the variance of random fieldsB
~see the text!.
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BRIEF REPORTS PHYSICAL REVIEW E 64 052904
adaptation is sufficiently slow. We also outlined the ro
played by synaptic correlations in the damage-spreading
nomenon.

APPENDIX

We show the validity of Eq.~1!. Using the same notation
as in the text, letPt(J) be the PDF for synapses at timet.
Then

Pt11~J!5TrJ8T~JuJ8!Pt~J8!. ~A1!

It is useful to observe that, due to the symmetry of our pr
lem, the distributionPt(J) will be symmetric under permu
tations of synapses~provided initial conditions respect th
symmetry!. It follows that Pt is a function of the only non-
trivial invariant for permutations one can build out ofK bi-
nary variables, i.e.,x51/K(a51

K Ja .
After standard calculations@1#, the probability distribu-

tion for x, r t(x), is found to evolve according to

r t11~x!5E
21

1

dy WK~x,y!r t~y!, ~A2!

where the time-independent kernelWK is given by

WK~x,y!

5

TrJTrJ8dS y2
1

K ( J8D dS x2
1

K ( JD )
a51

K

t~JauJa8 !

TrJ8dS y2
1

K ( J8D .

~A3!

The structure of this kernel is, in the limitK→`,
len

.
r-

05290
e-

-

WK~x,y!5
K2

~2p i !2E
2 i`

i`

dlE
2 i`

i`

dm eKF(l,m,x,y), ~A4!

where

F~l,m,x,y!5L~l,m!2S~y!2ly2mx, ~A5!

S~y!52
11y

2
log

11y

2
2

12y

2
log

12y

2
, ~A6!

eL(l,m)5~12A!el1m1Ael2m1Be2l1m1~12B!e2l2m;

~A7!

the time evolution for the synaptic distribution is then giv
by the following equation:

r t11~x!5
K2

~2p i !2E
21

1

dyE
2 i`

i`

dlE
2 i`

i`

dm eKF(l,m,x,y)r t~y!.

~A8!

As a consequence, in the large-K limit the integral in Eq.
~A8! is dominated by the physical saddle point, which mea
that the evolution operatorW becomes, in the large-K limit,
a Liouville operator, describing a deterministic evolutio
The saddle point is determined by the equations]F/]l
50, ]F/]m50, and ]F/]y50. After a little algebra, it
turns out that at the saddle point the relationx5B2A
1y(12A2B) holds. SinceWK is ~by construction! normal-
ized for everyK, also the limiting kernel, asK goes to infin-
ity, will be normalized: we can then conclude that the lim
ing kernel is given byd„x2 x̂(y)…, where x̂5B2A1y(1
2A2B).
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