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Diluted neural networks with adapting and correlated synapses
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We consider the dynamics of diluted neural networks with clipped and adapting synapses. Unlike previous
studies, the learning rate is kept constant as the connectivity tends to infinity: the synapses evolve on a time
scale intermediate between the quenched and annealing limits and all orders of synaptic correlations must be
taken into account. The dynamics is solved by mean-field theory, the order parameter for synapses being a
function. We describe the effects, in the double dynamics, due to synaptic correlations.
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In recent years, many models with a coupled dynamics ofs given by h;=(ZJ;;s;)/K, the sum being over the input
fast Ising spins and slow interactions have been studied toeurons. The coupled dynamics consists in alternate updat-
understand the simultaneous learning and retrieval in recuing of neurons and synapses. We will consider the limit
rent neural networkgl,2]. A major approach to this problem N,K—o with K<InN: it is well known [13] that neurons
is replica mean-field theory with the replica number beingcan then be treated as independent and identically distributed
the ratio of two temperatures characterizing the stocasticitgtochastic variables. Moreover, we choa@peonstant a
in the spin dynamics and the interaction dynamics, respec-»o: q controls the ratio between the time scales over which
tively [3,4]. Recently, this approach was used to studyneurons and synapses evolve and dld@batic approxima-
coupled dynamics in th¥Y spin glasg5,6]; the generaliza- tion is recovered by settingito zero[14]. As a consequence,
tion of these idea$7] to the case of a hierarchy of sub- in the present case one cannot neglect the correlations among
systems with different characteristic time scales, in thesynapses.

Sherrington-Kirckpatrick model, interestingly leads to Pari- Let us denote bys;,s,, ... ,Sk the input neurons and
si's solution[8]. Other approaches to coupled dynamics inJ;,J,, ... Jx the set ofK input synapses for a given neuron
neural networks are described [i8], using a discrete time s, (due to the translational symmetry the following reasoning
master equation approach, and[&0], exploring temporal holds for an arbitrars,).

learning rules. Stochastic learning rules in diluted neural net- We start considering the following simple situation: the
works were considered {11]: it was shown that in order to synapses are independently updated by the transition matrix:
preserve the associative memory capability of the networkT (J3|3')=11%_,7(J,|J.), where the transition matrix for the
the learning rateq must be kept very smalle.g., q single synapse is the following:

=0(1/K), whereK is the connectivity. Moreover, in[11]

the choice of a very small learning rate implied that the cor- 1—A B
relation between synaptic variables could be neglected so T:(

that the dynamics was solved by flow equations for a few

macroscopic order parameters. It is the purpose of this work

to reconsider coupled dynamics in diluted neural networks good order parameter for synapsesxis (E';:l\]a)/K
and keep the learning rate fixed as the connectifittends <[ —1,1]. Indeed, denoting witlp,(x) the probability distri-
to . The dynamics of the network, in this limit, can be pution function(PDF) for x at timet, one can demonstrate
exactly solved by taking into account all the orders of corre{see the Appendixthat in the largek limit the evolution of

lations between synapses, the order parameter for synapsgss ruled by a deterministic Liouville operator:
being a function on the intervdl—1,1]. According to the

argument in[11], the functioning of this model as an asso- 1
ciative memory is questionable; we regard it as a simple Pt+1(X):f dy S(x—X(y))p.(y) (1)
model to analyze the effects due to synaptic correlations in -1
the double dynamics.

As in [11], we consider a diluted neural network with \yiih §(=B—A+y(1—A—B). The moments of, provide
unidirectional synapses obeying a stochastic learning mechgse synaptic correlations:
nism [12]. The model is made oN three-state neurons
=0,=1, each connectetby binary synapsed;=+1) toK
input sites, chosen at random among fthsites. The parallel <Xp>t:f dx XPpe(x)=(IMJI@). .. gy 2
rule for updating synapses is the following: with probability
q each synapsé;; assumes the valugs; if this product is
not zero; otherwise the synapse remains unchanged. A pawhere the synapseB®, 3, ... J® are all different. The
allel stochastic dynamics with inverse temperat@rés as-  probability distribution, at time, for the local field acting on
sumed for neurons, where the local field acting on negfon neurons; is

A  1-B)
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wherem, is (s),, the average magnetization of the neuronic 81

configuration. We will denote by,=(s?); the activity of
neurons, satisfyin@,=m, for every timet.

Let us now come back to our problem. Due to the synap-
tic learning rules, the values & andB now depend on the

value ofs,. If s,=0, thenA=B=0 andx=y. If s,=1, then Pl

A=0q[(Qi—my/2], B=q[(Qi+my)/2], and x=gm+y(1
—qQ). If sp=—1, then A=q[(Q;+m)/2], B=q[(Q,
—m,)/2], andx=—qm+y(1—qQ,). This implies that even
if at timet we knowx exactly(i.e., p; is a § function), at time
t+1, xis not determinedd; . ; will generically be a convex 0 el o -
sum of threed’s). The full distributionp now plays the role | ' ‘ ‘ X
of order parameter for the synaptic variables, the time evo-

lution law being given by a mixture of three Liouville opera- /G- 1. The dashed lines represent #hdistributions from nu-
tors: merical simulations forK =20 (1), K=100 (2), K=200 (3), K

=500(4), to be compared with the invariant distribution of E4),
represented here by the solid line. The cgse0.06, Q=0.8, and

+ - =05i idered here.
pt+1(x)=(l—Qt)pt(x)+Z(Et_qmét) (1— —)1(_33) m=0:51s considered here
n
S LY P L ( - X*‘m) (=2 (k>(1—QQ)”k(qm)k<x”k>x
P1=9Q/ " 2(1=aQ) 1-qQ
X+ qm +T 2” (n)(l_qQ)nk(qm)k<Xnk> 7)
X pt 1_—th) (4 Q Kk s

whereX’ (2") is over evenodd) positive integers less than
0 is Heaviside’s function. or equal ton. The invariant distribution is a function in the
Let us now consider the dynamics of neurons. We assumillowing cases. Ifm=0, thenp.,.=8(x). If m==*=1, then
the following form for the conditional probability for neu- p..=8(x—1), and in the adiabatic limig—0 we havep.,
rons: — 8(x—m?/Q?). In the general case the first two cumulants
are given by

P(St+1|h)o<exp:8(hst+l+a§+1)r (5) <X>oo:m2/Q2, (8)

wheres is the vector of neurons at tinteanda controls the ~ Which is independent of, and
mean activity of the network. The time evolution law for

neuronic order parameters is then given by 2 2 q (m2 m4)
XVo—(X)e=n—=| = — =3/ 9
L= 1 d 2 sinh(Bxm) The last formula clearly shows how the synaptic correla-
m(t+1)= -1 Xpy(X 2 coshigxmy) + e~ F2’ tions are controlled by the learning rage For example, in

Fig. 1 the invariant distribution of Eq4), we numerically
find, is depicted(for q=0.06, Q=0.8, andm=0.5). We
2 costigxmy) compare it with thex distribution; over time, we find simu-
2 coshi xmy) + e~ pa’ (6) lating a system oK synapses, evolving by the stochastic
M learning mechanism, where neuragsand{s,} are indepen-
dently sampled wit{s)=m and(s?)=Q at each time step.
These two equations, together with Eg) and the initial The agreement with the theoretical curve increase¥as
conditionsmg, Qg, andpy(X), solve the double dynamics for grows and it is fairly good already fdf =500 (see Fig. L
the present model. The stationary regime of the coupled dynamics shows a
Now we turn to analyze the flow equations. First, we con-paramagnetic phase witm=0 and a ferromagnetic phase
sider the case afn and Q being kept constanf, tends as- with m# 0 [15]. By numerical analysis we find the transition
ymptotically to the invariant distributiop,. of Eq. (4). One line between the two phases in tf3ea plane: in Fig. 2, our
can easily derive a recurrence formula for the moments ofesults are shown for some valuesjofAt fixed a, the critical
the stationary distribution: temperature decreases @ss increased: the synaptic corre-

1
Q(t+ 1)=f71d><pt(X)
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FIG. 3. Concerning the damage spreading phenomegon,
FIG. 2. In the plane3-a of parametergsee the tejt the tran- =&e*/(9q|q:0 is depicted versus the variance of random fiells,
sition lines between the ferromagnetic and paramagnetic phases aisee the tejt
depicted forg=0 (continuous ling q=0.02 (dashed ling andq

=0.05 (dotted ling. 4 (1 ., 1-Ae
eHl:l—;ﬁldAFt(A)tan m (12)

lations seem to amplify the disordering capability of thermal

noise. The two phases are separated by a first-order transiy,dying damage spreading is equivalent to check the stabil-

tion, in agreement with3] where the para-ferro transition ity of the trivial fixed pointe=1 andI'=8(A—1), corre-

changes from second to first order as the influence of 5pi”§ponding to two identical replicas. We find that, for every

on the couplings dynamics becomes dominant. _ finite B, damage spreading occurs and a nontrivial fixed
Let us now study the role of adapting synapses in thgyoint e* <1 is stable. For low values of the stationary

damage-spreading phenomeriege, e.g[16]). For simplic-  isgribution T is peaked around its averagd approximat-

ity we assume two state neuross = 1, and we work in the g the tan? by Taylor expansion at the second order around
disordered phasm=0. We assume the local fields to be A = .2 the equation for the fixed point reads

1_6*3

1 *_1_ _ —1
hi:\/_RE ‘]ijsj+Bi1 (10) € 1 Wtan 1+€*3+ZB
CBe*?
whereB; are random magnetic fields whose Gaussian distri- + a[(1—e*3)(1+ e*3+28)]3’2' (12

bution has varianc®, and the normalization has been cho-

sen differently from the previous case so as to have a nonwhere C=(A2?)—(A)?=q(e*?—€e*%)/(2—q) at equilib-
trivial K—oo limit in this case. We assume to be at zerorjum.

temperature and consider two replicas of the system, subject The solutione* of the equation above is the asymptotic
to the same random fields and the same noise in the stochasorrelation between neurons in the two replicas as a function
tic learning mechanism. We introduce the order parametersf q. In Fig. 3, we depicte*/q|,- o versusB. Since we find

A and e defined as followsz(1+A) is the probability that  this quantity to be always positive, it follows that the synap-
two corresponding synapses, in the two replicas, are equalic correlations act against the damage-spreading phenom-
while 2(1+ €) is the probability that two corresponding neu- enon and tend to increase the correlation between the con-
rons, in the two replicas, are equal. As in the preceding sedigurations of neurons in the two replicas, as one might
tion, one easily finds that even X is exactly known at a intuitively expect.

certain time, it is not determined al later times: it must be We have described an exactly solvable model of double
described by a probability distribution,(A), whose evolu-  dynamics where synaptic correlations, arising from a sto-
tion is given by Eq.(4) with Q=1 andm;, replaced bye; . chastic learning mechanism, are important at all orders. The
While keeping fixedA, the variabledJs} are equal, in the order parameter for synapses in the mean-field dynamical
two replicas, with probability; (1+ A€). Therefore, the local  theory is a function whose evolution is given by a mixture of
fields in the two replicas can be writtdn=X+Y andh, Liouville operators. The critical temperature for the ferro-
=X-Y, whereX andY are random Gaussian variables with magnetic transition is found to decrease as the learning rate
variance, respectivelyox=(1+A¢€)/2+B, and oy=(1 increases: there is a wide range of temperatures such that the
—Ae€)/2. One can then easily obtain the time evolution lawsystem may order or not depending on the speed at which it
for e: adapts, and ordering is asymptotically achieved only if the

052904-3



BRIEF REPORTS PHYSICAL REVIEW E 64 052904

adaptation is sufficiently slow. We also outlined the role K2 i oo .

played by synaptic correlations in the damage-spreading phe- WK(KYFWJ, d?\j, dp efFOexy) - (Ag)
—joo —joo

nomenon.

APPENDIX where
We show the validity of Eq(1). Using the same notation FON, u,XY)=L(N, ) —S(y) — ANy — uX, (AB)
as in the text, letP,(J) be the PDF for synapses at time
Then
1+y 1+y 1-y 1-y
) , S(y)=— log - log——, (A6)
Pir1(D)=TryT(JI)P(JI"). (A1) 2 2 2 2

It is useful to observe that, due to the symmetry of our pI’Ob-eL()\,,u):(1_A)e)\+,u,+Ae}\—,u+ Be M4+ (1—B)e N
lem, the distributionP(J) will be symmetric under permu- :

tations of synapse§provided initial conditions respect the (A7)
symmetry. It follows that P, is a function of the only non- . _ o .
trivial invariant for permutations one can build out kifbi-  the time evolution for the synaptic distribution is then given

nary variables, i.ex=1K=X_,J,. by the following equation:
After standard calculationgl], the probability distribu-

tion for x, p¢(x), is found to evolve according to K2 1 i ks
pi) J pr+1(X)= WJ dYJ d)\j du eXFaXNp (y),
-1 —jo —io

1
pra(X)= f LAY W Oy)py), (A2) (A8)

As a consequence, in the larelimit the integral in Eq.
(A8) is dominated by the physical saddle point, which means
that the evolution operatdlV becomes, in the largk-limit,

where the time-independent kerndl is given by

Wi(x.y) a Liouville operator, describing a deterministic evolution.
1 1 K The saddle point is determined by the equati@is oA
TrTro 8l v— = 38l x== J 7(3,]3" =0, dF/ou=0, and gJF/9dy=0. After a little algebra, it
7 (y K ) K ) )Bl (Jal3a) turns out that at the saddle point the relatisrB—A

1 +y(1—A-B) holds. SincelN is (by construction normal-
Tryﬁ(y— K E J’) ized for everyK, also the limiting kernel, akK goes to infin-
(A3) ity, will be normalized: we can then COI’]C|l:Ide that the limit-
ing kernel is given byS(x—x(y)), wherex=B—A+y(1
The structure of this kernel is, in the linit— oo, —-A-B).
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